检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵跃宇[1] 康厚军[1] 蒋丽忠[2] 王连华[1]
机构地区:[1]湖南大学土木工程学院,湖南长沙410082 [2]中南大学土木建筑学院,湖南长沙410075
出 处:《中南大学学报(自然科学版)》2007年第1期148-153,共6页Journal of Central South University:Science and Technology
基 金:国家自然科学基金资助项目(10502020);教育部跨世纪人才基金资助项目(教技函(2002)48);湖南省科技厅资助项目(897201033)
摘 要:应用有限元方法对桥梁工程中的索-拱结构及普通拱结构的静力性能进行对比研究。其方法是:对比研究索-拱与普通拱结构自重作用下的内力分布情况;通过对比索拱与普通拱主要控制截面的影响线研究2种结构在活载作用下的不同力学性能;结合牛顿-拉弗森法和弧长法,分别对索-拱与普通拱结构在考虑几何非线性及同时考虑几何与材料双重非线性情形的极限承载能力进行数值分析。研究结果表明,索可以非常明显地提高和改善纯拱结构的静力学性能;索-拱结构的静力学性能比普通拱结构的优。With the finite element method, the in-depth research of static behaviors of cable stayed arch and true arch in bridge engineering were studied. The procedures were as follows: The internal force distribution of cable-stayed arch and true arch under gravity were investigated using the finite element method. The influence lines of mostly section of the two structures were studied to illustrate the mechanical behaviors under live load. Using the finite element approach in conjunction with the arc-length method and Newton-Raphson iteration, contrastive study of the limit load-carrying capacity of cable-stayed arch and true arch were presented, in which geometrical nonlinearity and double nonlinearity of structures were considered respectively. The results show that cables can improve the mechanical behaviors of normal arch evidently and effectively, and the static behaviors of cable-stayed arch are better than those of true arch.
分 类 号:U448.38[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.100.179