检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,湖南长沙410083
出 处:《中南大学学报(自然科学版)》2007年第2期333-338,共6页Journal of Central South University:Science and Technology
摘 要:为了能够从多方面反映水轮发电机组系统状态,实现对水轮发电机组故障模式的自动识别与准确诊断,将信息融合技术应用于水轮发电机组故障诊断系统。根据故障特征量将故障进行分类处理,采用多个并联的BP子神经网络进行水轮发电机组故障的局部诊断,获得彼此独立的证据,再运用D-S证据理论融合算法对各证据进行融合,最终实现对水轮发电机组故障的准确诊断。诊断测试实验证明:采用该诊断系统可有效地提高诊断可信度,减少诊断的不确定性。Hydroelectric generating sets(HGS) information fusion diagnosis system was built for reflecting the HGS system state in multi-aspects, realizing automatical identification of HGS fault patterns and accurately diagnosing the faults. Aider fault feaaLre data were classified and processed, several shunt-wound BP networks were used to carry on local HGS fault diagnosis and acquire independent evidences each other. Then D-S evidence theory fusion algorithms were used to fuse evidences. Accurate HGS fault diagnosis was fulfilled finally. The diagnostic tests prove that the system is good to improve the reliability of the diagnosis and decrease the uncertainty markedly.
关 键 词:水轮发电机 故障诊断 信息融合 证据理论 神经网络
分 类 号:V263.6[航空宇航科学与技术—航空宇航制造工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.89.169