Interactions of Marsh Orchid(Dactylorhiza spp.)and Soil Microorganisms in Relation to Extracellular Enzyme Activities in a Peat Soil  被引量:3

Interactions of Marsh Orchid(Dactylorhiza spp.)and Soil Microorganisms in Relation to Extracellular Enzyme Activities in a Peat Soil

在线阅读下载全文

作  者:H. KANG C. FREEMAN 

机构地区:[1]Department of Civil and Environmental Engineering, Yonsei University, Seoul 120- 749 (Korea) [2]School of Biological Sciences, University of Wales, Bangor, LL57 2UW (UK)

出  处:《Pedosphere》2007年第6期681-687,共7页土壤圈(英文版)

基  金:Project supported by the Advanced Environmental Biotechnology Research Center(AEBRC),Korea;the Korea Science and Engineering Foundation;the Ecotopia 21 of Ministry of Environment,Korea.

摘  要:The nature of the interactions between microbes and roots of plants in a peaty soil were studied in a laboratory- based experiment by measuring activities ofβ-glucosidase,phosphatase,N-acetylglucosaminidase,and arylsulphatase.The experiment was based on control(autoclaved),bacteria-inoculated,and plant(transplanted with Dactylorhiza)treatments, and samples were collected over 4 sampling intervals.Higher enzyme activities were associated with the bacteria-inoculated treatment,suggesting that soil enzyme activities are mainly of microbial origin.For example,β-glucosidase activity varied between 25-30μmol g^(-1)min^(-1)in the bacteria-inoculated samples whilst the activity of the control ranged between 4-12μmol g^(-1)min^(-1)A similar pattern was found for all other enzymes. At the end of the incubation,the microcosms were destructively sampled and the enzyme activities determined in bulk soil,rhizospheric soil,and on the root surface.Detailed measurement in different fractions of the peat indicated that higher activities were found in rhizosphere.However,the higher activities ofβ-glucosidase,N-acetylglucosaminidase,and arylsulphatase appeared to be associated with bacterial proliferation on the root surface,whilst a larger proportion of phosphatase appeared to be released from root surface.The nature of the interactions between microbes and roots of plants in a peaty soil were studied in a laboratorybased experiment by measuring activities of β-glucosidase, phosphatase, N-acetylglucosaminidase, and arylsulphatase. The experiment was based on control (autoclaved), bacteria-inoculated, and plant (transplanted with Dactylorhiza) treatments, and samples were collected over 4 sampling intervals. Higher enzyme activities were associated with the bacteria-inoculated treatment, suggesting that soil enzyme activities are mainly of microbial origin. For example,β-glucosidase activity varied between 25-30μmol g^-1 min^-1 in the bacteria-inoculated samples whilst the activity of the control ranged between 4-12 μmol g^-1 min^-1. A similar pattern was found for all other enzymes. At the end of the incubation, the microcosms were destructively sampled and the enzyme activities determined in bulk soil, rhizospheric soil, and on the root surface. Detailed measurement in different fractions of the peat indicated that higher activities were found in rhizosphere. However, the higher activities of β-glucosidase, N-acetylglucosaminidase, and arylsulphatase appeared to be associated with bacterial proliferation on the root surface, whilst a larger proportion of phosphatase appeared to be released from root surface.

关 键 词:DACTYLORHIZA extracellular enzyme PEAT RHIZOSPHERE wetland 

分 类 号:S15[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象