检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林大学数量经济研究中心,吉林长春130021
出 处:《中国管理科学》2007年第3期6-13,共8页Chinese Journal of Management Science
基 金:吉林大学"985工程"项目;国家自然科学基金资助项目(70471016);国家社会科学基金资助项目(05BJL019);教育部人文社会科学重点研究基地2005年度重大研究资助项目(05JJD790078)
摘 要:本文基于描述长记忆性的ARFIMA模型和具有结构性转变的平滑迁移模型,提出了联合检验两种时间序列性质的STARFIMA模型,并给出了估计模型系数的估计方法和检验非线性的刀切似然比方法。应用我国通货膨胀率的时间序列数据,我们应用Logistic型STARFIMA模型进行经验分析时发现,STARFIMA模型具有比ARFIMA模型更好的模拟效果和精度,而且该模型分别捕捉到了以通货膨胀率自身和加速通货膨胀率为转移变量的结构性转变,并发现在引入结构转变之后的通货膨胀率序列的记忆性变强的特征。On the base is of ARFIMA model and smooth transition model which describe.long memory and structural change respectively, this paper proposes a STARFIMA model to jointly test these two properties of time series and presents the methods of parameter estimation and bootstrap likelihood ratio test for null of linearity. As a case of China's inflation rate, we find that STARFIMA model can simulate better than the linear ARFIMA model by empirical analysis with logistic smooth transition ARFIMA model. Moreover, this model can capture structural change with transition variables of inflation rate and increasing inflation rate, and the results suggest that the memory becomes strong when considering structural change and displays long range dependence.
关 键 词:通货膨胀率 长记忆性 结构性转变 STARFIMA模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117