检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学信号统计处理研究室,合肥230027
出 处:《天文学报》2007年第4期507-514,共8页Acta Astronomica Sinica
基 金:国家"九五"重大科学工程(98BJG001)资助资助项目
摘 要:天光是天体观测中的一种重要噪声源.减天光问题是制约多目标光纤光谱观测深度的重要因素.主分量分析(PCA)是统计学的一种分析方法,它可以用来寻找各个天光谱之间的关系,以进一步获得目标光谱中含有的天光成分.为了研究LAMOST的减天光方法,用SDSS的一组原始观测数据进行了仿真实验,实验结果表明,采用PCA方法比SDSS处理程序能够更有效地减天光.最后对PCA方法在LAMOST中的应用前景进行了展望.Sky is an important noise in astronomical observations. The problem of sky-subtraction is an important factor that restricts the depth of the multi-object fiber spectroscopic observation. The method of principle component analysis (PCA) comes from statistics and it can be used to find the relation among the entire sky spectra which farther can be used to obtain the sky contents of the object spectrum. Using PCA method, several main sky components can be obtained from a certain observation and the content of each components in each object spectrum can be measured. By using the MDL or AIC criterion from the field of signal detection, the number of main components can be decided. Thus the sky contents of each object spectrum can be determined and be subtracted to get the original object spectrum. For studying the way of the sky-subtraction of LAMOST, a group of observation data from SDSS is verified with PCA. The experimental result shows that method of PCA is more effectual in sky-subtraction than SDSS reduction. In the end, prospect of the use of PCA in LAMOST is anticipated.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117