检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄报星[1]
机构地区:[1]浙江东方职业技术学院基础部,浙江温州325011
出 处:《复杂系统与复杂性科学》2007年第3期66-71,共6页Complex Systems and Complexity Science
摘 要:用稳定性理论证明Lorenz系统平衡点在延迟反馈控制和自适应延迟反馈控制的稳定性。将自适应方法引入延时反馈控制系统,构成一种自适应延迟反馈控制混沌Lorenz系统,该方法能自动调整控制增益,使Lorenz系统由混沌运动状态转变为规则运动状态。由于初始控制增益取零值,所以控制扰动始终是很小,并在受控系统进入定常态后,控制扰动自动地趋于零,改善了DFC初始控制扰动过大的问题。在Matlab数值仿真中观察到控制增益和控制扰动的自动调整过程,验证了受控系统对平衡点的稳定收敛。The stability of the equilibriums of Lorenz system are verified by the stability theory in DFC (delayed feedback control) system and ADFC(adaptive delayed feedback control) system. The adaptive method is leaded into DFC system. This constructs an adaptive delayed feedback control method to con- trol chaotic Lorenz system. The control gain can be adjusted automatically to lead Lorenz system from chaos to order. The zero initial value of the control makes the control disturbance to be small. Control gain tends to zero after the system is controlled. The problem that control disturbance in DFC is too big gets improved. The process of automatically adjusting of the control gain and control disturbance are observed in numerical simulations. This confirms that the controlled system may stably restrain to the equilibriums.
分 类 号:O322[理学—一般力学与力学基础] O415[理学—力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117