基于一维搜索和动态调节的非线性规划PSO算法  

Nonlinear Programming PSO Algorithm Based on a Line Search and Dynamic Adjustment

在线阅读下载全文

作  者:刘淳安[1] 

机构地区:[1]宝鸡文理学院计算与信息科学研究所,陕西宝鸡721013

出  处:《运筹与管理》2007年第5期9-12,34,共5页Operations Research and Management Science

基  金:国家自然科学基金项目(60374063);陕西省自然科学基础研究计划项目(2006A12);陕西省教育厅科学研究计划项目(07JK180);宝鸡文理学院重点科研计划项目(ZK0619)

摘  要:对非线性规划问题的处理通常采用罚函数法,使用罚函数法的困难在于参数的选取。本文提出了一种解非线性规划问题的新PSO算法(NSDPSO),该方法融入了一维搜索和动态调节技术,使NSDPSO很好地克服了标准PSO算法在前期收敛较快而在后期易陷入局部最优的缺陷。另外,文中还给出了一种新的适应度函数及选择算子,使算法在选择下一代时保持群体中不可行解的一定比例,这样不但能有效地增加群体的多样性,而且可以避免传统的过度惩罚,使群体向最优解逼近。最后的数据实验表明该算法对非线性规划问题求解是非常有效的。Penalty function is often used to deal with the constrained optimization problems, but it is difficult to choose parameter property. In this paper, a new PSO algorithm (NSDPSO) solving the nonlinear programming problems is presented. First, in order to make NSDPSO overcome the defaults in which the simple PSO is fast convergence in the early phase and plunges into the local optimal, a line search and dynamic adjustment techniques are introduced in NSDPSO. Second, a new selection operator based on the new fitness function is also given. Using the new selection operator, NSDPSO can keep a ratio of infeasible solutions in the swarm when selecting the next generation swarm. As a result, it can not only increase the diversity of swarm but also avoid the defects of over-penalization and make the swarm approach the optimal solutions. The numerical experiments show that NSDPSO is effective in dealing with the nonlinear programming problems.

关 键 词:非线性规划 PSO算法 一维搜索 动态调节 

分 类 号:O221.2[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象