碳氢化合物、醛、酮和硫醇的定量结构-色谱保留指数相关性研究  被引量:8

Study on the Quantitative Structure-Chromatographic Retention Indices Relationships of Hydrocarbons,Aldehydes,Ketones and Mercaptans

在线阅读下载全文

作  者:周丛艺[1] 聂长明[1] 田万福 戴益民[3] 彭国文[1] 

机构地区:[1]南华大学化学化工学院,湖南衡阳421001 [2]湘南中学,湖南郴州423000 [3]长沙理工大学化学与环境工程系,湖南长沙410077

出  处:《分析测试学报》2007年第6期802-807,共6页Journal of Instrumental Analysis

基  金:湖南省自然科学基金资助项目(03JJY3024);湖南省经委技术创新基金资助项目(湘经科[2005]283号)

摘  要:采用平衡电负性和相对化学键长对传统距离矩阵进行修正,构建新拓扑指数Nt。结合路径数,建立碳氢化合物、醛、酮和硫醇等化合物在24种极性和非极性色谱柱上的定量结构-色谱保留指数关系(QSRR)模型,23种模型的相关系数大于0.99。模型经留n法交叉检验,显示出良好稳健性和预测能力。模型物理意义明确,表明色谱保留指数可用分子的大小、平衡电负性、支化度和形状等内在结构信息进行有效表征。模型经Needham公式分析,结果显示新指数Nt对保留指数影响最大。借助Hyperchem软件进行对比研究,结果表明拓扑化学法优于量子化学AM1法。A novel topological index Nt was established by using the equilibrium electronegativity and the relative chemical bond length to modify the traditional distance matrix. Along with the path number, the models of the quantitative structures -chromatographic retention indices relationships(QSRR) of hydrocarbons, aldehydes, ketones and mercaptans on 24 stationary phases including the polar and nonpolar ones were established. It was found that the correlation coefficients of 23 models were all greater than 0. 99. The leave-n-out cross validation indicated that the models were statistically significant and reliable. The physical meaning of the model was explicit indicating that the chromatographic retention index(RI) could be characterized efficiently by the size and shape of the molecules, equilibrium electronegativity and branching degree. The results obtained by analyzing the model with the Needham equation demonstrated that the new index Nt has the greatest impact on the retention index. The results obtained from the comparison study with the Hyperchem software also indicated that the topological chemical method was superior to the AM1 method of quantum chemistry.

关 键 词:拓扑指数(Nt) 定量结构-色谱保留指数关系(QSRR) 碳氢化合物   硫醇 

分 类 号:O6-04[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象