检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微计算机信息》2007年第33期139-140,97,共3页Control & Automation
基 金:教育部基金资助项目(03023)
摘 要:FP-growth算法是一种被证明有效的频繁模式挖掘算法。但是由于在挖掘频繁模式时需要递归地生成大量的条件FP-树,其时空效率较低,本文针对这一问题,首先构造一种改进的TFP-树结构,然后在构造的TFP-tree基础上引入被约束子树提出一种基于TFP树的频繁项集的改进挖掘算法,并对该算法进行性能分析,结果证明该算法在运行速度得到很大提高。FP-growth algorithm is a frequent pattern mining algorithm which has been proved to be efficiency .But this algorithm must generate a huge number of conditional FP-trees recursively in process of mining , so the efficiency of FP-growth remains unsatisfactory. In this paper, an improved TFP-tree frame was built firstly ,then introducing constrained sub tree in the base of TFP- tree. Finally ,an improved frequent pattern mining algorithm based on const rained TFPtree is proposed ,at the same time a per- formance analysis was carried out .The result proved that this algorithm's run speed was improved a lot .
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31