检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学计算机学院,西安710071
出 处:《控制与决策》2007年第11期1250-1254,共5页Control and Decision
基 金:国家自然科学基金项目(60574039;60371044)
摘 要:针对非参数线性判别分析(LDA)的类间散布矩阵,就如何有效描述类边界结构这一问题,提出一种SVM与k近邻(kNN)法相结合的非参数类间散布矩阵构造方法——SVM-kNN.该方法消除了非类边界样本对类边界结构信息的扭曲.将SVM-kNN非参数LDA方法用于外场实测高分辨距离像的特征提取,并将识别结果与加权kNN非参数LDA法和谱域原空间法比较,结果表明,SVM-kNN非参数LDA方法能显著提高识别效率.The between class scatter matrix of nonparametric linear discriminant analysis(LDA) faces the problem of how to efficiently specify the boundary structure of original data. A method of constructing nonparametric between class scatter matrix by combining SVM and k nearest neighbors (kNN) method, SVM-kNN method, is presented. The presented method avoids the distortion of boundary structure information caused by non-boundary samples. The presented SVM-kNN nonparametric LDA method is applied to the feature extraction of outfield real high resolution range profiles. Comparing with weighted kNN nonparametric LDA method and original spectrum domain method, the recognition results show that the presented SVM-kNN nonparametric LDA method can improve recognition efficiency significantly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117