STATISTICAL APPROXIMATION BASED FINE FREQUENCY SYNCHRONIZATION FOR OFDM SYSTEMS  

STATISTICAL APPROXIMATION BASED FINE FREQUENCY SYNCHRONIZATION FOR OFDM SYSTEMS

在线阅读下载全文

作  者:Lu Cewu Liu Xiaojun Kuang Yujun Fang Guangyou Chen Qianbin 

机构地区:[1]The Institute of Electronics, Chinese Academy of Sciences. Beijing 100080, China

出  处:《Journal of Electronics(China)》2007年第6期760-764,共5页电子科学学刊(英文版)

摘  要:The paper proposes a novel approach for fine frequency synchronization of OFDM syn- chronization systems in multi-path channels. Maximum Likelihood (ML) function of frequency offsets including integral and decimal parts in frequency domain is developed according to the law of great number to eliminate the noise impact of the signal. When the timing delay close to the actual time, the proposed function produces a deep valley indicating frequency offset when large Valley-Square- Error (VSE) appears. Coarse timing offset can also be detected when function’s Valley-Square-Error (VSE) is maximized. Simulation results shows that the proposed algorithm gives very robust estimation of frequency offset, and a coarse timing offset estimation.The paper proposes a novel approach for fine frequency synchronization of OFDM synchronization systems in multi-path channels. Maximum Likelihood (ML) function of frequency offsets including integral and decimal parts in frequency domain is developed according to the law of great number to eliminate the noise impact of the signal. When the timing delay close to the actual time, the proposed function produces a deep valley indicating frequency offset when large Valley-Square- Error (VSE) appears. Coarse timing offset can also be detected when function's Valley-Square-Error (VSE) is maximized. Simulation results shows that the proposed algorithm gives very robust estimation of frequency offset, and a coarse timing offset estimation.

关 键 词:Orthogonal Frequency Division Multiplexing (OFDM) Frequency synchronization Statistical approximation Maximum Likelihood (ML) 

分 类 号:TN919[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象