检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学数据处理中心,陕西西安710072
出 处:《电声技术》2007年第11期52-54,60,共4页Audio Engineering
摘 要:音频自动分类是解决音频结构化问题和提取音频内容语义的重要手段之一,是当前基于内容的音频检索领域的一个研究热点。在考察音频数据特征的基础上,针对左-右密度隐马尔可夫模型(left-right DHMM)不能很好反映音频中状态反复的缺点,提出了一种基于各态历经混合高斯密度隐马尔可夫模型(EMGD_HMM)的分类器,并应用于语音、音乐和它们的混合声音的分类。实验结果表明,EMGD_HMM的分类精度要优于left-right DHMM。Automatic audio classification is one of the significant methods to extract content semantics from audio. An improved classifier based on EMGD_HMM(Ergodic Mixed Gaussian Density Hidden Markov Model) is proposed to classify audio in speech, music, and their mixture. The experimental results show that compared with left-right DHMM(left-right Density Hidden Markov Model), EMGD HMM achieves better classification accuracy.
关 键 词:音频自动分类 left-right DHMM模型 EMGD_HMM模型 MEL倒谱系数
分 类 号:TN912[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.88.145