检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhan Qingyi Xie Xiangdong Wu Chengqiang Qiu Shulin
机构地区:[1]Dept. of Comput. and Inform., Fujian Agriculture and Forestry Univ., Fuzhou 350002, China. [2]Dept. of Math., Ningde Normal College, Ningde 352100, China. [3]College of Math. and Comput. Sci., Fuzhou Univ., Fuzhou 350002, China. [4]Dept. of Math., Gannan Normal College, Ganzhou 341000, China.
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2007年第4期388-392,共5页高校应用数学学报(英文版)(B辑)
基 金:Supported by the Natural Science Foundation of Fujian Province(Z0511052,2006J0209);the Foundation of Fujian Education Department(JA04158,JA04274)and the Foundation of Developing ScienceTechnology of Fuzhou University(2005-QX-20)
摘 要:This paper studies a class of quartic system which is more general and realistic than the quartic accompanying system.x'=-y+ex+lx^2+mxy+ny^2,y'=x(1-Ay)(1+Cy^2),(*)where C 〉 0. Sufficient conditions are obtained for the uniqueness of limit cycle of system (*) and some more in-depth conclusion such as Hopf bifurcation.This paper studies a class of quartic system which is more general and realistic than the quartic accompanying system.x'=-y+ex+lx^2+mxy+ny^2,y'=x(1-Ay)(1+Cy^2),(*)where C 〉 0. Sufficient conditions are obtained for the uniqueness of limit cycle of system (*) and some more in-depth conclusion such as Hopf bifurcation.
关 键 词:accompanying system bifurcation limit cycle uniqueness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31