A ROUGH HYPERSINGULAR INTEGRAL OPERATOR WITH AN OSCILLATING FACTOR ON FUNCTION SPACE  

A ROUGH HYPERSINGULAR INTEGRAL OPERATOR WITH AN OSCILLATING FACTOR ON FUNCTION SPACE

在线阅读下载全文

作  者:Ye Xiaofeng Dept.of Math.,Zhejiang Univ.,Hangzhou 310027,China Dept.of Math.,East China JiaoTong Univ.,Nanchang 330013,China. 

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2007年第4期449-452,共4页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National 973 Program of China(1999075105);National Natural Science Foundation of China(10271107);RFDP(20030335019);Natural Science Foundation of Zhejiang Proyince(RC97017)

摘  要:The singular integral operatorTα,βf(x)=p.v.∫R^n[e^i|y|^-βΩ(y’)]/[|y|^n+α]f(x-y)dy,defined for all test functions f is studied, where Ω(y') is a distribution on the unit sphere S^n-1 satisfying certain cancellation condition. It is proved that Tα,β is a bounded operator from the Triebel-Lizorkin space Fp^s,q to the Triebel-Lizorkin space Fp^s+γ,q, provided that Ω(y') is a distribution in the Hardy space H^r(S^n-1) with r = (n - 1)/(n - 1 + γ).The singular integral operatorTα,βf(x)=p.v.∫R^n[e^i|y|^-βΩ(y’)]/[|y|^n+α]f(x-y)dy,defined for all test functions f is studied, where Ω(y') is a distribution on the unit sphere S^n-1 satisfying certain cancellation condition. It is proved that Tα,β is a bounded operator from the Triebel-Lizorkin space Fp^s,q to the Triebel-Lizorkin space Fp^s+γ,q, provided that Ω(y') is a distribution in the Hardy space H^r(S^n-1) with r = (n - 1)/(n - 1 + γ).

关 键 词:Hardy space hypersingular integral. 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象