检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京师范大学数学科学学院统计数据分析实验室,北京100875 [2]遥感科学国家重点实验室北京师范大学地理学与遥感科学学院,北京100875
出 处:《遥感学报》2007年第6期845-851,共7页NATIONAL REMOTE SENSING BULLETIN
基 金:国家自然科学基金项目(编号:40671129);国家自然科学基金重点基金项目(编号:10231030);"长江学者和创新发展计划"项目
摘 要:在遥感反演中,通常假设反演参数和模型误差的先验分布服从正态分布,这个假设通常不太符合实际。为此,本文提出由Bootstrap方法估计反演参数和模型误差的先验分布的方案。同时对先验数据按照地物分类,统计假设检验表明将先验知识分类的合理性。最后,以RossThick-LiTransit核组合的线性核驱动BRDF模型为例,用NOAA-AVHRR观测数据对使用Bootstrap方法的反演算法进行试验,并与正态假设下的Tikhonov正则化反演和Bayes反演结果比较,说明对先验知识分类和使用Bootstrap方法的遥感反演方法能明显减小参数反演结果的不确定性,提高其可信度。It is usually assumed that the prior distributions of parameters and error are Gaussian distribution in remote sensing inversion. This assumption seems to be impractical in many eases. Prior distribution of parameters and error are very important in remote sensing inversion since many remote sensing inversion strategies take advantage of prior knowledge. We present a bootstrap method for estimating the prior distributions of parameters and error in this paper. This method relaxes the distribution assumption of parameters and error; and obtains those approximately exact distributions by means of prior data. Moreover, we classify prior data since they are collected from different classes, and implement statistical test for classified prior data. Results show that proper classification of prior data is reasonable. Finally, we take RossThick- LiTransit linear kernel-driven model as an example, and make a comparison of our method with usual Tikhonov regularizing inversion and Bayes inversion under normal hypothesis with NOAA-AVHRR observations. The result shows that classifying prior data and using the prior distribution obtained by bootstrap method can significantly decrease uncertainty of parameters.
关 键 词:遥感反演 BOOTSTRAP方法 先验分布 后验分布 假设检验
分 类 号:TP701[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13