Insertion/removal kinetics of lithium ion in spinel LiCu_xMn_(2-x)O_4  

Insertion/removal kinetics of lithium ion in spinel LiCu_xMn_(2-x)O_4

在线阅读下载全文

作  者:曾荣华 李伟善 吕东生 黄启明 赵灵智 

机构地区:[1]School of Chemistry and Environment,South Chi na Normal University

出  处:《中国有色金属学会会刊:英文版》2007年第6期1312-1318,共7页Transactions of Nonferrous Metals Society of China

基  金:Project(20373016) supported by the National Natural Science Foundation of China

摘  要:The insertion/removal processes of lithium ion in spinel lithium manganese oxide(LiMn2O4) and copper doped spinel lithium manganese oxide (LiCuxMn2-xO4) on a powder microelectrode were studied by electrochemical impedance spectroscopy(EIS), cyclic voltammetry(CV) and X-ray diffractometry(XRD). The insertion/removal process of lithium ion in the spinel oxides consists of three steps: charge transfer of lithium ion on the surface of the spinel oxides, diffusion and occupation of lithium ion in the lattice of the spinel oxide. Similar to chromium, the doping of copper in spinel lithium manganese oxide results in the increase of the charge transfer resistance and the double layer capacitance for lithium insertion or removal, and the decrease of the diffusion coefficient of lithium ion in the lattice of spinel oxide. However, the insertion capacitance, a parameter reflecting the occupation of lithium ion in the lattice of the spinel oxide, is hardly influenced by the doping of copper. The influence of the doped copper on the kinetic process of lithium insertion/removal in spinel lithium manganese oxide is related to the contraction of spinel lattice.The insertion/removal processes of lithium ion in spinel lithium manganese oxide(LiMn204) and copper doped spinel lithium manganese oxide (LiCuxMn2-xO4) on a powder microelectrode were studied by electrochemical impedance spectroscopy(EIS), cyclic voltammetry(CV) and X-ray diffractometry(XRD). The insertion/removal process of lithium ion in the spinel oxides consists of three steps: charge transfer of lithium ion on the surface of the spinel oxides, diffusion and occupation of lithium ion in the lattice of the spinel oxide. Similar to chromium, the doping of copper in spinel lithium manganese oxide results in the increase of the charge transfer resistance and the double layer capacitance for lithium insertion or removal, and the decrease of the diffusion coefficient of lithium ion in the lattice of spinel oxide. However, the insertion capacitance, a parameter reflecting the occupation of lithium ion in the lattice of the spinel oxide, is hardly influenced by the doping of copper. The influence of the doped copper on the kinetic process of lithium insertion/removal in spinel lithium manganese oxide is related to the contraction of spinel lattice.

关 键 词:尖晶石 锂锰氧化物 掺杂 LiCuxMn2-xO4 

分 类 号:O614.111[理学—无机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象