检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学能源与动力学院
出 处:《沈阳建筑大学学报(自然科学版)》2007年第1期126-129,共4页Journal of Shenyang Jianzhu University:Natural Science
基 金:国家自然科学基金项目(50678030)
摘 要:目的将模糊集应用到管网分析中,研究流体管网中模糊最小树的算法.方法利用全水平截集排序指标(OERI)法对模糊管网中的分支进行排序,在保持网络结构不变的情况下,将网络图论的常规算法适当调整,求得管网的模糊最小树.结果结合算例,既算出了树的模糊阻抗值,又针对无差异、乐观与悲观3种权重情况获得了树的OERI值,实现了模糊最小树算法.结论在保持网络结构不变的情况下,将网络图论的常规算法适当调整,既可求得管网的模糊最小树,又获得了对应不同主观权重函数时树的OERI值.In this article, with the aid of a ranking method of fuzzy numbers, algorithms of fuzzy minimal spanning tree are obtained by applying fuzzy set to analysis of pipeline networks. By introducing the overall existence ranking index (OERI) to fuzzy numbers, order or ranking is established in the fuzzy networks. By using this fuzzy ranking method, under the condition of the original structure of the fluid network, conventional algorithms of minimal spanning tree in graph theory can be applied with appropriate modification. A numerical example is given to illustrate the algorithm of fuzzy minimal spanning tree in three different cases, namely, the indifference weighting, the optimistic weighting and the pessimistic weighting. When the structure of the fluid network remains the same and different kinds of uncertainties are considered for simu- lation and analysis of fluid pipeline networks, with appropriate modification, conventional algorithms of graph theory can be utilized to get fuzzy minimal spanning tree, including fuzzy resistance and OERI of three different weighting functions.
关 键 词:模糊管网 最小树 模糊算法 模糊数排序 模糊阻抗 流体管网
分 类 号:TU83[建筑科学—供热、供燃气、通风及空调工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3