基于MRF随机场的多光谱遥感影像最优化分级聚类  被引量:1

Multispectral Remote Sensing Images Optimization Hierarchical Clustering Based on Markov Random Field

在线阅读下载全文

作  者:刘晓云[1] 陈武凡[1] 王振松[1] 

机构地区:[1]电子科技大学自动化工程学院,四川成都610054

出  处:《测绘学报》2007年第4期400-405,442,共7页Acta Geodaetica et Cartographica Sinica

基  金:国家"973"重点基础研究发展规划项目(2003CB716101)

摘  要:有限混合模型FM的分级聚类已广泛应用于不同领域,然而,由于它的计算复杂度与观测数据量平方成正比,致使在遥感影像方面应用受到了限制。另外,多光谱图像能提供空间和光谱两类信息详细的数据,但是,大多数多光谱图像聚类方法是基于像素的聚类,仅使用了其光谱信息而忽视了空间信息。本文定义一个相对混合密度函数,通过引入一个q-参数来调节各成分密度对其混合分布的贡献,提出一种广义有限混合模型GFM,设计一种新的适用于多光谱遥感影像的GFM分级聚类算法。该算法把MRF随机场和GFM模型结合在了一起,分类数通过PLIC准则自动确定。最后,利用仿真结果验证该算法的有效性,同时通过与K均值聚类、FM分级聚类以及SVMM分级聚类的比较说明本文算法的优越性。Hierarchical clustering based on the Finite Mixture(FM) model has shown very good performance in a number of fields. However, it generally requires storage and computing at least proportional to the square of the dimension of observations, so that its application to large datasets has been hindered by a time and memory complexity. Otherwise, multispectral images provide detailed data with information in both the spatial and spectral domains. But many clustering methods for multispectral images are based on a per-pixel classification, while uses only spectral information and ignores spatial information. Firstly, a new mixture density function called the relative density function is defined. To adjust the contribution of the each component density to mixture density function, the q-parameter into the mixture densities is introduced. T he Generalized Finite Mixture (GF M) model is proposed in this paper. Also, a new hierarchical clustering based on GFM models, suitable for large datasets, e.g., multispectral remote sensing images, is proposed. This algorithm is integrated with GFM model and Markov random field. The number of clusters is automatically identified by using the Pseudolikelihood Information Criterion (PLIC). At last, gives the simulation results, which testifies the validity of this algorithm. The experiment shows also a superior performance compared to several other methods, such as K-means and classical hierarchical clustering based on the classical FM model.

关 键 词:凝聚式分级聚类 有限混合模型 空间变化有限混合模型 广义有限混合模型 MARKOV随机场 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象