检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学土木水利学院,辽宁大连116024
出 处:《大连理工大学学报》2007年第6期858-861,共4页Journal of Dalian University of Technology
摘 要:把沥青路面视为多层弹性半空间轴对称体,利用热弹性力学以及Hankel和Laplace积分变换等数学方法,首先推导出任意一层沥青路面温度应力的刚度矩阵,然后按传统的有限元方法组成总体刚度矩阵.通过求解由总体刚度矩阵所构成的代数方程和Hankel及Laplace积分逆变换就可解出外荷载和温度联合作用下沥青路面温度应力的精确解.由于刚度矩阵的元素中不含有正指数项,计算时不会出现溢出现象,从而克服了传递矩阵法的缺点.在推导过程中不用人为选择应力函数,使得问题的求解更加合理,同时也为进一步研究沥青路面的湿度场、动力学等问题奠定了理论基础.计算实例证明了推导结果的正确性.The flexible pavement is regarded as a multilayered elastic half space axisymmetrical body. The stiffness matrix for a layer is derived firstly based on the fundamental thermal elasticity equations and some mathematic methods such as Hankel and Laplace integral transformation. Then the global stiffness matrix is established for multilayered elastic half space using the finite element concepts in which layers are completely contacted. Therefore, explicit solution for thermo-stresses of the flexible pavement is obtained from the solution of the algebra equation formed by global stiffness matrix and the inverse Hankel and Laplace integral transformation. Because the elements of matrix do not include positive exponential function, the calculation is not overflowed. Therefore, the shortages of transfer matrix method are overcome. This method is convenient for application without selecting stress function, and can be used to solve the other problems for flexible pavement such as moisture field and dynamics. The correctness of this method is proved by an example of pavement surface deflection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.80.91