检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学能源与环境学院,江苏省南京市210096
出 处:《中国电机工程学报》2007年第34期90-95,共6页Proceedings of the CSEE
摘 要:电力市场中,市场出清电价(market clearing price,MCP)受到众多因素的共同作用,具有较强的随机性和不确定性,常规的MCP单值预测模型未充分利用历史数据反映的不确定性信息,预测结果无法体现MCP的随机变化特性,预测精度也有限。该文提出一种基于免疫遗传机制的聚类方法,用以实现历史数据输入输出映射关系的划分,并结合贝叶斯概率法则建立MCP离散概率分布的预测模型。对美国PJM市场数据的仿真结果显示,该文的预测模型能较好地反映MCP的不确定性特点,且具有较高的预测精度。As being affected by too many factors, the energy market clearing price (MCP) in power markets is stochastic and volatile. Traditional MCP forecasting models usually make no good use of the uncertain information contained in the history data, the estimation can't reflect the volatility and the precision is limited. This paper proposes a linear clustering method based on the immune-genetic algorithm (IGA) and uses the method to divide the mapping relationship between the inputs and outputs in the history data. Besides, on the base of clustering, a forecasting model of MCP's discrete probability distribution by the Bayesian method is established. Simulation experiment on history data from American power market PJM shows the forecasting method proposed in this paper can perfectly reflect the stochastic volatility of MCP and has a good precision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104