检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]集美大学计算机工程学院 [2]武汉大学软件工程国家重点实验室,武汉430072 [3]武汉理工大学理学院,武汉430070
出 处:《计算机工程与应用》2007年第35期71-73,共3页Computer Engineering and Applications
摘 要:传统的多项式配准模型原理直观,计算简单,但由于采用多项式建立模型,往往带有局限性,对于复杂的配准可能无效;传统的物理配准模型虽然配准精度较高,但对成像的各种因素需要精确掌握,实际操作难度较大。演化建模只需要根据问题的特征来确定模型结构的一些基本组成单元,就可以自动建立较为精确的模型。针对以上传统图像配准模型的不足,并考虑到演化建模具有智能挖掘模型的优点,提出了一种基于演化建模的图像配准模型。最后给出了该方法在图像配准中的实验,实验结果表明该方法有较高配准精度,适用于图像配准。Traditional image registration model can be categorized to general model and physical model.General model is easy to compute,but usually inaccurate.The reason is limitation of using polynomia to build model.Physical model is accurate,but it calls for a lot of specialty knowledge.Evolutionary modeling can build accurate model automatically by evolutionary algorithms.It only needs to confirm a few elementary model structure units for the problem.Considering the shortcomings of traditional imaging registration model and the advance of evolutionary,this paper proposed a new image registration model based on evolutionary modeling.An image registration experiment is given in the last.Both of general model and evolutionary model are tested.The experiment result indicated that the evolutionary model has high precision for image registration and it is fit for image registration.
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15