检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xu Maojun
机构地区:[1]Department of Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China
出 处:《Progress in Natural Science:Materials International》2007年第12期1397-1404,共8页自然科学进展·国际材料(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant No .30572331);the Natural Science Foundation of Zhejiang Province (GrantNo .302785);the Key Scientific Project of Zhejiang High Education Commission
摘 要:The endogenous signaling network of plants plays important roles in mediating the exogenous factor-induced biosynthesis of secondary metabolites. Nitric oxide (NO) has emerged as a key signaling molecule in plants recently. Numerous studies demonstrated that the main signaling molecules such as salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and NO were not only involved in regulating plant secondary metabolite biosynthesis but also interacted to form a complex signaling network by mutual inhibition and/or synergy. The recent progress in the signal network of plant secondary metabolite biosynthesis has been discussed in this paper. Furthermore, we propose a hypothetical model to show that NO might act as a potential molecular switch in the signaling network leading to plant secondary metabolite biosynthesis.The endogenous signaling network of plants plays important roles in mediating the exogenous factor-induced biosynthesis of secondary metabolites. Nitric oxide (NO) has emerged as a key signaling molecule in plants recently. Numerous studies demonstrated that the main signaling molecules such as salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and NO were not only involved in regulating plant secondary metabolite biosynthesis but also interacted to form a complex signaling network by mutual inhibition and/or synergy. The recent progress in the signal network of plant secondary metabolite biosynthesis has been discussed in this paper. Furthermore, we propose a hypothetical model to show that NO might act as a potential molecular switch in the signaling network leading to plant secondary metabolite biosynthesis.
关 键 词:plant secondary metabolites BIOSYNTHESIS signaling network nitric oxide salicylic acid jasmonic acid reactiveoxygen species.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40