检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Song Jinou Yao Chunde Wang Hongfu
机构地区:[1]State Key Laboratory of Engine, Tianjin University, Tianjin 300072, China
出 处:《Progress in Natural Science:Materials International》2007年第12期1476-1481,共6页自然科学进展·国际材料(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant Nos .50676065,50576064)
摘 要:To account for the effects of both chemistry and flow turbulence, the present study proposes an integrated NO sub-model that combines the extended Zel'dovich mechanism and engine CFD computations to simulate the NO histories in a diesel engine. NOx sub-model parameters and pollutant formation mechanisms can be more easily investigated by solving the NOx sub-model. The new NO formation model incorporating the effects of both chemical kinetics and turbulent mixing was applied to simulate a diesel engine with a quiescent combustion chamber, and one with a re-entrant combustion chamber; the premise of the model being the reaction rate is mainly determined by a kinetic timescale and a turbulent timescale. The results indicate that the predicted NO formulation from the new model agrees well with the measured data. As the utilization of fossil fuels continues to increase, the control of NOx emissions is a worldwide concern; and it is imperative to understand fully the NOx reaction processes in combustion systems. This technology has the potential to enhance the application of various combustion techniques used to reduce NOx emissions from practical combustion systems.To account for the effects of both chemistry and flow turbulence, the present study proposes an integrated NO sub-model that combines the extended Zel'dovich mechanism and engine CFD computations to simulate the NO histories in a diesel engine. NOx sub-model parameters and pollutant formation mechanisms can be more easily investigated by solving the NOx sub-model. The new NO formation model incorporating the effects of both chemical kinetics and turbulent mixing was applied to simulate a diesel engine with a quiescent combustion chamber, and one with a re-entrant combustion chamber; the premise of the model being the reaction rate is mainly determined by a kinetic timescale and a turbulent timescale. The results indicate that the predicted NO formulation from the new model agrees well with the measured data. As the utilization of fossil fuels continues to increase, the control of NOx emissions is a worldwide concern; and it is imperative to understand fully the NOx reaction processes in combustion systems. This technology has the potential to enhance the application of various combustion techniques used to reduce NOx emissions from practical combustion systems.
关 键 词:nitrogen oxides (NOx) COMBUSTION TURBULENCE diesel.
分 类 号:TK42[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7