检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北大学数学与计算机学院
出 处:《河北大学学报(自然科学版)》2007年第3期327-331,共5页Journal of Hebei University(Natural Science Edition)
基 金:河北省科学技术研究与发展计划(04213534)
摘 要:朴素贝叶斯分类器是一种简单有效的文本分类方法.改进方法利用同义词对文本的特征词集进行过滤,在一定程度上放松了朴素贝叶斯的特征独立性假设;在特征选择时迭代了2种不同的特征选择方法,有效地提高了特征集的代表性.实验结果表明,本方法有效地提高了朴素贝叶斯分类器的性能.Naive Bayesian Classifier is a simple and powerful method for text classification. Our improved method uses synonyms to filtrate the features of text, loosing the independent condition required by Bayesian method. We apply two different feature extraction methods in the iteration process, enhancing the representative ability of feature collection effectively. The experimental results show that our advanced method has obviously improved the performance of Naive Bayesian Classifier.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40