检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学经济管理学院 [2]大庆油田公司第六采油厂,黑龙江大庆163300
出 处:《中国石油大学学报(自然科学版)》2007年第6期120-126,共7页Journal of China University of Petroleum(Edition of Natural Science)
基 金:国家自然科学基金重点项目(50643020)
摘 要:对于多输入多输出系统,针对如何根据系统模型和期望输出反求系统输入的问题,提出了一种基于过程神经网络和量子遗传算法相结合的方法,并给出了具体的实现方法。首先根据实际系统的领域知识和学习样本集,建立满足系统实际输入输出映射关系的正向过程神经网络;然后按照系统在过程区间的某一期望输出,用过程神经网络的输出误差构造适应度函数,用量子遗传算法逆向确定系统的过程输入信号,使该输入信号满足已建立的正向过程映射关系,从而完成系统的逆向过程控制。油藏采收率参量的逆向求解结果证明了该方法的有效性。An optimization algorithm of process neural networks and quantum genetic algorithm ( PNN-QGA ) was proposed to ascertain the input of multiple-input and multiple-output (MIMO) system from both system model and hope output. And the general realization approach was presented. Firstly, the process neural network (PNN) that represents the mapping relation between input and output of system is founded according to system field knowledge and training samples sets. Secondly, the fitness function of quantum genetic algorithm (QGA) is constructed by using PNN output error based on the hope output of process interval. The system input information is ascertained by QGA according to a certain hope output of system, and it accords with the PNN mapping relation that is founded. Hence, the converse process solution of the system is accomplished. Finally, a converse-solving example of oil recovery ratio was given to illustrate the availability of the approach.
关 键 词:过程神经网络 量子遗传算法 油藏采收率 逆向求解
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28