检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学岩土工程研究所,江苏南京210098 [2]南京九通建设工程有限公司,江苏南京210015
出 处:《探矿工程(岩土钻掘工程)》2007年第11期5-8,共4页Exploration Engineering:Rock & Soil Drilling and Tunneling
基 金:国家自然科学基金(编号:50579017)
摘 要:影响堤防管涌的各种因素是不确定和随机的,在堤防管涌的发生过程中各因素间表现出复杂的非线性行为。运用基于RBF神经网络的基本原理,建立了堤防管涌预测的RBF神经网络模型,从新的角度研究堤防管涌的预测问题,对该问题进行了探索性的研究。对该理论的建立以及预测方法进行了系统的讨论,为该领域的研究提供了完整的技术方法。对于23个典型堤防管涌实例的研究表明,RBF网络较BP网络有较高的预测精度,较短的预测时间和较快的预测速度,能够较好地描述堤防管涌的非线性特征。The factors that influence the piping occurring in embankment are uncertain and random, and in the process of piping they turn out to be nonlinear behavior. RBF neural network theory was used to establish a new model in order to predict the piping of embankment. This paper discussed the establishment of predicting model and process of application in detail. Comparing with BP neural network, the application in 23 cases of embankment piping shows that RBF network be more precise, more quickly and faster.
分 类 号:TV871.2[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7