检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2007年第10期1663-1670,共8页浙江大学学报(英文版)A辑(应用物理与工程)
基 金:Project supported by the National Natural Science Foundation of China (No. 60473130);the National Basic Research Program(973) of China (No. 2004CB318000)
摘 要:As three control points are fixed and the fourth control point varies, the planar cubic C-curve may take on a loop, a cusp, or zero to two inflection points, depending on the position of the moving point. The plane can, therefore, be partitioned into regions labelled according to the characterization of the curve when the fourth point is in each region. This partitioned plane is called a "characterization diagram". By moving one of the control points but fixing the rest, one can induce different characterization diagrams. In this paper, we investigate the relation among all different characterization diagrams of cubic C-curves based on the singularity conditions proposed by Yang and Wang (2004). We conclude that, no matter what the C-curve type is or which control point varies, the characterization diagrams can be obtained by cutting a common 3D characterization space with a corresponding plane.As three control points are fixed and the fourth control point varies, the planar cubic C-curve may take on a loop, a cusp, or zero to two inflection points, depending on the position of the moving point. The plane can, therefore, be partitioned into regions labelled according to the characterization of the curve when the fourth point is in each region. This partitioned plane is called a "characterization diagram". By moving one of the control points but fixing the rest, one can induce different characterization diagrams. In this paper, we investigate the relation among all different characterization diagrams of cubic C-curves based on the singularity conditions proposed by Yang and Wang (2004). We conclude that, no matter what the C-curve type is or which control point varies, the characterization diagrams can be obtained by cutting a common 3D characterization space with a corresponding plane.
关 键 词:SPLINE C-CURVE Characterization diagram SINGULARITY
分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.112.12