检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电力系统及其自动化学报》2007年第6期7-11,47,共6页Proceedings of the CSU-EPSA
基 金:国家自然科学基金项目(50577044)
摘 要:应用粒子群优化算法(PSO)求解电力系统无功优化问题,提出基于混沌搜索的混合粒子群优化算法,以克服PSO容易早熟而陷入局部最优解的缺点。该算法引入了基于群体适应度方差的早熟判断机制,当算法陷入早熟时,利用混沌运动的遍历性、随机性和规律性等特性,先对当前粒子群体中的最优粒子进行混沌寻优,然后把混沌寻优的结果随机替换群体中的一个粒子,从而提高了PSO的寻优特性。通过对IEEE 14、IEEE 30、IEEE 118等标准测试系统进行无功优化,并与遗传算法、标准PSO进行比较,表明该算法具有更高的搜索效率和更好的全局优化能力。The chaos search based hybrid particle swarm optimization (PSO) algorithm is proposed in the paper to avoid the premature phenomenon of PSO,which is applied into the reactive power optimization. The mechanism for judging local convergence is introduced based on variance of population's fitness. Taking advantage of the ergodicity,randomicity and regularity of chaotic movement ,a new global superior individual is obtained by chaotic search ,by which an individual in the current population is randomly replaced,when the process appears local convergence. Case study on IEEE 14-bus,IEEE 30-bus and IEEE ll8-bus proves that the proposed algorithm has higher search efficiency and better capability of global optimization than the genetic algorithm and standard PSO.
关 键 词:电力系统 无功优化 混合粒子群优化算法 混沌优化
分 类 号:TM714[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.94