检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]美国罗格斯大学通信信息与图书馆学学院,新伯朗士威08901
出 处:《图书情报工作》2007年第12期11-18,32,共9页Library and Information Service
摘 要:在当今的信息环境里,传统的信息检索系统在提高搜索性能方面有其局限性。传统信息检索系统的高查全率和查准率充其量也只能达到查询词所能表达的程度,但构造准确的查询词通常又是用户的困难所在,而且让用户评价每一篇搜索结果也很费时。自20世纪90年代以来不断开发的推荐技术被用来帮助解决传统的信息检索系统所存在的问题。介绍文献推荐系统的基本过程和主要内容,尤其是基于内容过滤和协作过滤的两种推荐技术,并讨论现行文献推荐系统面临的问题及系统评估问题,这些问题需要在未来的系统设计中加以考虑。Traditional Information Retrieval (IR) systems have limitations in improving search performance in today's information environment. The high recall and poor precision of traditional IR systems are only as good as with the accuracy of search query, which is, however, usually difficult for the user to construct. It is also time-consumlng for the user to evaluate each search result, The recommendation techniques having been developed since the early 1990s help solve the problems that traditional IR systems have. This paper explains the basic process and major elements of document recommender systems, especially the two recommendation techniques of content-based filtering and collaborative filtering. Also discussed are the evaluation issue and the problems that current document recommender systems are facing, which need to be taken into account in future system designs.
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38