机构地区:[1]Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China [2]Bioelectromagnetics Laboratory, ZhejiangUniversity School of Medicine, Hangzhou 310058, China
出 处:《Acta Pharmacologica Sinica》2007年第12期1873-1880,共8页中国药理学报(英文版)
基 金:Project supported by the grants from National Natural Science Foundation of China(№ 50137030 and 30570440);the Natural Science Foundation of Zhejiang Province of China(Y205279)
摘 要:Aim: To evaluate the effects of global system for mobile communications (GSM) 1800 MHz microwaves on dendritic filopodia, dendritic arborization, and spine maturation during development in cultured hippocampal neurons in rats. Methods: The cultured hippocampal neurons were exposed to GSM 1800 MHz microwaves with 2.4 and 0.8 W/kg, respectively, for 15 min each day from 6 days in vitro (DIV6) to DIV14. The subtle structures of dendrites were displayed by transfection with farnesylated enhanced green fluorescent protein (F-GFP) and GFP-actin on DIV5 into the hippocampal neurons. Results: There was a significant decrease in the density and mobility of dendritic filopodia at DIV8 and in the density of mature spines at DIV14 in the neurons exposed to GSM 1800 MHz microwaves with 2.4 W/kg. In addition, the average length of dendrites per neuron at DIV10 and DIV14 was decreased, while the dendritic arborization was unaltered in these neurons. However, there were no significant changes found in the neurons ex- posed to the GSM 1800 MHz microwaves with 0.8 W/kg. Conclusion: These data indicate that the chronic exposure to 2.4 W/kg GSM 1800 MHz micro- waves during the early developmental stage may affect dendritic development and the formation of excitatory synapses of hippocampal neurons in culture.Aim: To evaluate the effects of global system for mobile communications (GSM) 1800 MHz microwaves on dendritic filopodia, dendritic arborization, and spine maturation during development in cultured hippocampal neurons in rats. Methods: The cultured hippocampal neurons were exposed to GSM 1800 MHz microwaves with 2.4 and 0.8 W/kg, respectively, for 15 min each day from 6 days in vitro (DIV6) to DIV14. The subtle structures of dendrites were displayed by transfection with farnesylated enhanced green fluorescent protein (F-GFP) and GFP-actin on DIV5 into the hippocampal neurons. Results: There was a significant decrease in the density and mobility of dendritic filopodia at DIV8 and in the density of mature spines at DIV14 in the neurons exposed to GSM 1800 MHz microwaves with 2.4 W/kg. In addition, the average length of dendrites per neuron at DIV10 and DIV14 was decreased, while the dendritic arborization was unaltered in these neurons. However, there were no significant changes found in the neurons ex- posed to the GSM 1800 MHz microwaves with 0.8 W/kg. Conclusion: These data indicate that the chronic exposure to 2.4 W/kg GSM 1800 MHz micro- waves during the early developmental stage may affect dendritic development and the formation of excitatory synapses of hippocampal neurons in culture.
关 键 词:global system for mobile communications microwaves dendritic filopodia dendriticarborization SPINES hippocampal neurons
分 类 号:R338[医药卫生—人体生理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...