Determination of the Earth’s free core nutation parameters by using tidal gravity data  被引量:1

Determination of the Earth’s free core nutation parameters by using tidal gravity data

在线阅读下载全文

作  者:刘明波 孙和平 徐建桥 周江存 

机构地区:[1]Institute of Geodesy and Geophysics, Chinese Academy of Sciences

出  处:《Acta Seismologica Sinica(English Edition)》2007年第6期708-711,共4页

基  金:The Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-133);National Natural Science Foundation of China (40574034 and 40730316).

摘  要:The Earth's free core nutation (FCN) is a retrograde eigenrnode which is attributed to the interaction between the solid mantle and the liquid core of the rotational elliptical Earth. This mode appears as an eigenmode of nearly diurnal free wobble (NDFW) in a terrestrial reference frame with a period of about one day (XU et al, 2001). Therefore, the NDFW will lead to an obvious resonance enhancement in the diurnal tidal gravity observations, especially those of the tidal waves with frequencies closed to its eigenfrequency such as P1, K1, ψ1 and Ф1. The FCN resonance parameters can be retrieved accurately by high-precision tidal gravity observations, especially those recorded with the superconducting gravimeters (SG). The Global Geodynamics Project (GGP) organized by IUGG took it as an important content for determining the FCN resonance parameters by using gravity data. However, the results are affected by many factors such as station location, background noise, the selection of the tide-generating potential tables, ocean tide models, data processing techniques and so on. In our study, the FCN parameters will be retrieved by using the SG observations at Wuhan, and the effects of the choices of various tide-generating potential tables, oceanic models and weight functions on the estimation of the FCN parameters will be discussed in detail,The Earth's free core nutation (FCN) is a retrograde eigenrnode which is attributed to the interaction between the solid mantle and the liquid core of the rotational elliptical Earth. This mode appears as an eigenmode of nearly diurnal free wobble (NDFW) in a terrestrial reference frame with a period of about one day (XU et al, 2001). Therefore, the NDFW will lead to an obvious resonance enhancement in the diurnal tidal gravity observations, especially those of the tidal waves with frequencies closed to its eigenfrequency such as P1, K1, ψ1 and Ф1. The FCN resonance parameters can be retrieved accurately by high-precision tidal gravity observations, especially those recorded with the superconducting gravimeters (SG). The Global Geodynamics Project (GGP) organized by IUGG took it as an important content for determining the FCN resonance parameters by using gravity data. However, the results are affected by many factors such as station location, background noise, the selection of the tide-generating potential tables, ocean tide models, data processing techniques and so on. In our study, the FCN parameters will be retrieved by using the SG observations at Wuhan, and the effects of the choices of various tide-generating potential tables, oceanic models and weight functions on the estimation of the FCN parameters will be discussed in detail,

关 键 词:superconducting gravimeter free core nutation resonance parameters 

分 类 号:P315.726[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象