检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨成林[1] 周科平[1] 高文翔[1] 杨念哥[1]
机构地区:[1]中南大学资源与安全工程学院,湖南长沙410083
出 处:《数学的实践与认识》2008年第1期92-96,共5页Mathematics in Practice and Theory
摘 要:在网络的任意点求解绝对中心等特殊点是网络流研究的一个难点.在目前最小费用理论的基础上引入平面几何理论,把网络等效于几何图形,建立了数学模型.通过求解,得出了网络间的最佳连接点,从而确定出盲竖井的位置.最后以云南锡业集团个旧东区两个生产平台之间的连接为一算例,得出了理想的结果,验证了该方法的有效可行性.Solving certain points, such as logistic centre, among any points in the network is a difficulty in the research of network flow. This paper regards networks as geometry graphics by introduced the theory of plane geometry based on the theory of minimum cost, and the mathematics model is established. Therefore, the optimum connecting points are worked out by solved the model and the location of the bind shaft is made sure. In the last, take the case of connecting of two levels at Yunnan Tin Company Group, the feasibility of the method is verified.
分 类 号:O22[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147