检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学计算机科学与工程学院
出 处:《中国矿业大学学报》2008年第1期105-111,共7页Journal of China University of Mining & Technology
基 金:福建省自然科学基金项目(A0310008);福建省高新技术研究开放计划重点项目(2003H043)
摘 要:针对"基于密度的带有噪声的空间聚类"(DBSCAN)算法存在的不足,提出"分而治之"和高效的并行方法对DBSCAN算法进行改进.通过对数据进行划分,利用"分而治之"思想减少全局变量Eps值的影响;利用并行处理方法和降维技术提高聚类效率,降低DBSCAN算法对内存的较高要求;采用增量式处理方式解决数据对象的增加和删除对聚类的影响.结果表明:新方法有效地解决了DBSCAN算法存在的问题,其聚类效率和聚类效果明显优于传统DBSCAN聚类算法.An improved density based spatial clustering of applications with noise(DBSCAN) algorithm, which can considerably improve cluster quality, is proposed. The algorithm is based on two ideas: dividing and ruling, and; high performance parallel methods. The idea of dividing and ruling was used to reduce the effect of the global variable Eps by data partition. Parallel processing methods and the technique of reducing dimensionality were used to improve the efficiency of clustering and to reduce the large memory space requirements of the DBSCAN al- gorithm. Finally, an incremental processing method was applied to determine the influence on clustering of inserting or deleting data objects. The results show that an implementation of the new method solves existing problems treated by the DBSCAN algorithm: Both the efficiency and the cluster quality are better than for the original DBSCAN algorithm.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28