检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,长沙410083
出 处:《计算机工程与应用》2008年第1期138-141,共4页Computer Engineering and Applications
基 金:湖南省教育厅资助科研课题(the Research Project of Department of Education of Hunan Province;China under Grant No.湘教通[2004]344号)。
摘 要:为了解决无监督异常检测方法无法检测突发性的大规模攻击的问题,提出了一种基于聚类的无监督异常检测模型,该模型从多个聚类器中选取DB指数最小的分簇结果,并利用最小簇内距离、最大簇内距离对每个簇进行分类,从而识别出攻击。实验表明该模型明显提高了检测率、降低了误报率。Unsupervised anomaly detection can't detect a massive attack in bursts.In order to solve this problem,this paper proposes a unsupervised anomaly detection model based on clustering.It chooses clustering result from multi-clusters which has the minimum DB index,applies minimum intra-cluster distance and maximum intra-cluster distance to classify every cluster,then identifies attacks.Experimental results show that the proposed strategy can improve obviously detection rate and decrease false positive rate.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222