一种基于T-Snake模型的医学图像分割方法  

New method of medical-image segmentation based on T-Snake model

在线阅读下载全文

作  者:康晓东[1] 何丕廉[1] 李志圣[1] 张雪君[2] 

机构地区:[1]天津大学计算机科学与技术学院,天津300072 [2]天津医科大学影像系,天津300070

出  处:《计算机工程与应用》2008年第1期183-185,234,共4页Computer Engineering and Applications

基  金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60603027);天津市科技发展计划(the ScienceTechnology Development Project of Tianjin,No.04310941R);天津市应用基础研究计划(the Applied Basic Research Project of TianjinNo.05YFJMJC11700)。

摘  要:改进的T-Snake算法首先在分水岭法中,对相邻区域以其像素数、灰度均值和灰度方差定义距离,并据其在图像上建立新的连通图,以对图像过度分割而产生的一些过小区域合并;其次,在模型跨边缘时,利用已分割断层图像中模型内部区域的统计特征,用区域生长法获取内点并重新参数化模型,使模型不再跨边缘,以保证模型形变到正确的边缘。算法在MATLAB上验证通过。In this paper,we propose an algorithm for the medical image segmentation based on the live wire algorithm.We modified the traditional live wire algorithm by redefining the distance of the neighborhood,using its pixel,gray-seale mean and gray- scale variance.Then a new connected graph was constructed by the computer,which combines the over-small-regions that was caused by over-segmenting to medical image.We also presented a new method for solving the problem of model's crossing edge based on T-snake model.While the model was in crossing edge,we used statistical features of model's interior region in the segmented tomography image,got the interior points by using region growing segmentation and reconstructed the parametric model in order to ensure the model to be deformed to the right edge.This combined method can avoid characteristic segmentation errors when edge detection or region growing technique is adopted separately.

关 键 词:医学图像分割 形变模型 活动轮廓 分水岭算法 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象