检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马晓艳 杨春鹏 程扬健 栗斌 李冬松 林璋 黄丰 郑晶
机构地区:[1]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences [2]Fuzhu Entry-exit Inspection and Quarantine Bureau
出 处:《Chinese Journal of Structural Chemistry》2008年第1期15-20,共6页结构化学(英文)
基 金:This work was supported by the National Natural Science Foundation of China (20501020, 40772034); Nanoscience Foundation of China (90406024);Natural Science Foundation of Fujian Province (No. X0650094/2006J0383);973 program (2007CB815601); the Special Project on Science and Technology of Fujian Province (2005YZ1026)
摘 要:Enterobacter cloacae CYS-25 strain was isolated from a chromate plant. This bacterium was capable of resisting high hexavalent chromium concentration and reducing Cr(VI) under aerobic condition. CrO4^2- stimulated the increase of bacterial size and production of compact convex paths containing chromium on the bacterial surface. The increase of bacterial size was caused by integrative growth but not extracellular polymeric substance hyperplasia. IR and SDS-PAGE analyses showed the extracellular polymeric substance (EPS) components were mainly proteins and had no obvious changes whether the strains were induced by Cr(VI) or not. The EPS was amorphous and contained trivalent chromium. Under CrO4^2- growth condition, the extracellular substance of Enterobacter cloacae CYS-25 strains and Cr(VI) had redox reaction. The products were Cr^3*-protein complexes which formed a piece of compact convex paths on the surface of bacteria and prevented Cr(VI) from entering into cells.Enterobacter cloacae CYS-25 strain was isolated from a chromate plant. This bacterium was capable of resisting high hexavalent chromium concentration and reducing Cr(VI) under aerobic condition. CrO4^2- stimulated the increase of bacterial size and production of compact convex paths containing chromium on the bacterial surface. The increase of bacterial size was caused by integrative growth but not extracellular polymeric substance hyperplasia. IR and SDS-PAGE analyses showed the extracellular polymeric substance (EPS) components were mainly proteins and had no obvious changes whether the strains were induced by Cr(VI) or not. The EPS was amorphous and contained trivalent chromium. Under CrO4^2- growth condition, the extracellular substance of Enterobacter cloacae CYS-25 strains and Cr(VI) had redox reaction. The products were Cr^3*-protein complexes which formed a piece of compact convex paths on the surface of bacteria and prevented Cr(VI) from entering into cells.
关 键 词:Enterobacter cloacae chromium-resistance extracellular polymeric substance(EPS)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3