机构地区:[1]School of GeoSciences, University of Edinburgh, UK [2]Edinburgh Anisotropy Project, British Geological Survey, Edinburgh, UK [3]Institute of Earthquake Science, China Earthquake Administration, Beijing, China
出 处:《Petroleum Science》2008年第1期1-12,共12页石油科学(英文版)
摘 要:This paper reviews a new understanding of shear-wave splitting (seismic-birefringence) that is a fundamental revision of conventional fluid-rock deformation. It is a New Geophysics with implications for almost all solid-earth geosciences, including hydrocarbon exploration and production, and earthquake forecasting. Widespread observations of shear-wave splitting show that deformation in in situ rocks is controlled by stress-aligned fluid-saturated grain-boundary cracks and preferentially orientated pores and pore-throats pervasive in almost all igneous, metamorphic, and sedimentary rocks in the Earth's crust. These fluid-saturated microcracks are the most compliant elements of the rock-mass and control rock deformation. The degree of splitting shows that the microcracks in almost all rocks are so closely spaced that they verge on fracture-criticality and failure by fracturing, and are critical systems with the “butterfly wing's” sensitivity of all critical systems. As a result of this crack-criticality, evolution of fluid-saturated stress-aligned microcracked rock under changing conditions can be modelled with anisotropic poroelasticity (APE). Consequently, low-level deformation can be: monitored with shear-wave splitting; future behaviour calculated with APE; future behaviour predicted with APE, if the change in conditions can be quantified; and in principle, future behaviour controlled by feed-back. This paper reviews our current understanding of the New Geophysics of low-level pre-fracturing deformation.This paper reviews a new understanding of shear-wave splitting (seismic-birefringence) that is a fundamental revision of conventional fluid-rock deformation. It is a New Geophysics with implications for almost all solid-earth geosciences, including hydrocarbon exploration and production, and earthquake forecasting. Widespread observations of shear-wave splitting show that deformation in in situ rocks is controlled by stress-aligned fluid-saturated grain-boundary cracks and preferentially orientated pores and pore-throats pervasive in almost all igneous, metamorphic, and sedimentary rocks in the Earth's crust. These fluid-saturated microcracks are the most compliant elements of the rock-mass and control rock deformation. The degree of splitting shows that the microcracks in almost all rocks are so closely spaced that they verge on fracture-criticality and failure by fracturing, and are critical systems with the “butterfly wing's” sensitivity of all critical systems. As a result of this crack-criticality, evolution of fluid-saturated stress-aligned microcracked rock under changing conditions can be modelled with anisotropic poroelasticity (APE). Consequently, low-level deformation can be: monitored with shear-wave splitting; future behaviour calculated with APE; future behaviour predicted with APE, if the change in conditions can be quantified; and in principle, future behaviour controlled by feed-back. This paper reviews our current understanding of the New Geophysics of low-level pre-fracturing deformation.
关 键 词:Crack anisotropy New Geophysics pre-fracturing deformation seismic birefringence shear-wave splitting
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...