检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yujuan HUANG Tianming WANG
机构地区:[1]Department of Mathematics & Physics, Shandong Jiaotong University, Jinan 250023, China [2]Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China
出 处:《Journal of Systems Science & Complexity》2007年第4期601-609,共9页系统科学与复杂性学报(英文版)
摘 要:In this paper, the following are introduced briefly: the basic concept of q-proper-hypergeometric; an algorithmic proof theory for q-proper-hypergeometric identities; and elimination in the non- commutative Weyl algebra. We give an algorithm for proving the single-variable q-proper-hypergeometric identities that is based on Zeilberger's approach and the elimination in Weyl algebra. Finally, we test several examples that have been proven by D. Zeilberger and H. Will using the WZ-pair method and Gosper algorithm.
关 键 词:Algorithm proof ELIMINATION q-hypergeometric identities.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15