密井网区井震结合进行沉积微相研究及储层预测方法探讨--以大庆杏树岗油田杏56区为例  被引量:11

A study of depositional microfacies and method of reservoir prediction by integrating well log and seismic information in dense well pattern——taking Xing 56 block,Xingshugang oil field,Daqing as an example

在线阅读下载全文

作  者:苏燕[1] 杨愈[1] 白振华[1] 王彦辉[2] 

机构地区:[1]中国地质大学(北京)能源学院,北京100083 [2]大庆油田勘探开发研究院,黑龙江大庆163712

出  处:《地学前缘》2008年第1期110-116,共7页Earth Science Frontiers

基  金:高等学校博士学科点专项科研基金项目(20050491001)

摘  要:随着中国油气田开发程度的逐步加深,有效预测井间砂体的分布已成为高效开采与提高采收率的核心问题。文中以大庆杏树岗油田杏56区块为例,尝试利用井、震有机结合的方法进行精细沉积微相展布的研究,对进入特高含水阶段的油田进行井间砂体的预测。在密测网地震层位追踪的前提下提取多种地震属性,以反距离加权平均法提取井点属性,并采用聚类方法对提取的井点地震属性和井点储层参数进行多元统计相关性分析,以确定聚类分析中使用的地震信息,进而建立多元一次方程,描述敏感地震信息与储层参数的桥梁,以便用井、震信息综合预测井间储层参数的变化,由此编制出目的层段的沉积微相平面展布图,并结合生产动态资料进行验证。其成果在实际生产中得到较好的验证。As the exploitation of oil and gas fields in China is rapidly developing, the effective prediction of the distribution of interwell sand has become an urgent issue in achieving efficient exploitation and improving oil recovery. Based on the integrated information of well and seismic data, a study of the fine microfacies and the prediction of interwell sand in super high water cut oil field at Daqing Xingshugang oil field Xing 56 block was carried out. Seismic attributes were extracted on the premise of seismic horizon tracing in a dense framework and the seismic attributes on wells were determined by inverse distance weighted mean method. The clustering procedure correlation analysis method in the multivariate statistical correlation analysis between seismic attributes and well data was employed to build up the relationship between the seismic information and the reservoir information and to predict the changes of interwell reservoir data. The planar map of depositional microfacies distribution in target segments was compiled using the result of relationship among rock, logging and seismic data, and it was verified by production performance data.

关 键 词:预测 地震属性 聚类法 沉积微相 

分 类 号:TE121.31[石油与天然气工程—油气勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象