检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ying Ying TAN Yi Zheng FAN
机构地区:[1]School of Mathematics and Computation Sciences, Anhui University,Hefei 230039, P. R. China [2]Department of Mathematics and Physics, Anhui Institute of Architecture and Industry, Hefei 230022, Po R. China
出 处:《Acta Mathematica Sinica,English Series》2008年第1期139-146,共8页数学学报(英文版)
基 金:National Natural Science Foundation of China (10601001);Anhui Provincial Natural Science Foundation (050460102);NSF of Department of Education of Anhui province (2004kj027,2005kj005zd);Foundation of Anhui Institute of Architecture and Industry (200510307);Foundation of Innovation Team on Basic Mathematics of Anhui University;Foundation of Talents Group Construction of Anhui University
摘 要:Let G be a mixed glaph which is obtained from an undirected graph by orienting some of its edges. The eigenvalues and eigenvectors of G are, respectively, defined to be those of the Laplacian matrix L(G) of G. As L(G) is positive semidefinite, the singularity of L(G) is determined by its least eigenvalue λ1 (G). This paper introduces a new parameter edge singularity εs(G) that reflects the singularity of L(G), which is the minimum number of edges of G whose deletion yields that all the components of the resulting graph are singular. We give some inequalities between εs(G) and λ1 (G) (and other parameters) of G. In the case of εs(G) = 1, we obtain a property on the structure of the eigenvectors of G corresponding to λ1 (G), which is similar to the property of Fiedler vectors of a simple graph given by Fiedler.Let G be a mixed glaph which is obtained from an undirected graph by orienting some of its edges. The eigenvalues and eigenvectors of G are, respectively, defined to be those of the Laplacian matrix L(G) of G. As L(G) is positive semidefinite, the singularity of L(G) is determined by its least eigenvalue λ1 (G). This paper introduces a new parameter edge singularity εs(G) that reflects the singularity of L(G), which is the minimum number of edges of G whose deletion yields that all the components of the resulting graph are singular. We give some inequalities between εs(G) and λ1 (G) (and other parameters) of G. In the case of εs(G) = 1, we obtain a property on the structure of the eigenvectors of G corresponding to λ1 (G), which is similar to the property of Fiedler vectors of a simple graph given by Fiedler.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.8