Controlling chaos based on an adaptive nonlinear compensator mechanism  

Controlling chaos based on an adaptive nonlinear compensator mechanism

在线阅读下载全文

作  者:田玲玲 李东海 孙先仿 

机构地区:[1]School of Automation Science and Electrical Engineering,Beijing University of Aeronautics & Astronautics [2]Department of Thermal Engineering,Tsinghua University

出  处:《Chinese Physics B》2008年第2期507-519,共13页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No 50376029)

摘  要:The control problems of chaotic systems are investigated in the presence of parametric uncertainty and persistent external disturbances based on nonlinear control theory. By using a designed nonlinear compensator mechanism, the system deterministic nonlinearity, parametric uncertainty and disturbance effect can be compensated effectively. The renowned chaotic Lorenz system subjected to parametric variations and external disturbances is studied as an illustrative example. From the Lyapunov stability theory, sufficient conditions for choosing control parameters to guarantee chaos control are derived. Several experiments are carried out, including parameter change experiments, set-point change experiments and disturbance experiments. Simulation results indicate that the chaotic motion can be regulated not only to steady states but also to any desired periodic orbits with great immunity to parametric variations and external disturbances.The control problems of chaotic systems are investigated in the presence of parametric uncertainty and persistent external disturbances based on nonlinear control theory. By using a designed nonlinear compensator mechanism, the system deterministic nonlinearity, parametric uncertainty and disturbance effect can be compensated effectively. The renowned chaotic Lorenz system subjected to parametric variations and external disturbances is studied as an illustrative example. From the Lyapunov stability theory, sufficient conditions for choosing control parameters to guarantee chaos control are derived. Several experiments are carried out, including parameter change experiments, set-point change experiments and disturbance experiments. Simulation results indicate that the chaotic motion can be regulated not only to steady states but also to any desired periodic orbits with great immunity to parametric variations and external disturbances.

关 键 词:chaotic system nonlinear compensator mechanism Lorenz chaotic system 

分 类 号:O415.5[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象