A MAP Approach for Vision-based Self-localization of Mobile Robot  被引量:3

A MAP Approach for Vision-based Self-localization of Mobile Robot

在线阅读下载全文

作  者:WANG Ke WANG Wei ZHUANG Yan 

机构地区:[1]Research Center of Information and Control, Dalian University of Technology, Dalian 116024, P.R. China

出  处:《自动化学报》2008年第2期159-166,共8页Acta Automatica Sinica

基  金:Supported by National Natural Science Foundation of China(60605023,60775048);Specialized Research Fund for the Doctoral Program of Higher Education(20060141006)

摘  要:一当场,自我本地化系统为在有深入的 3D 里程碑的 3D 环境起作用的活动机器人被开发。机器人通过合并从 odometry 和单向性的照相机收集的信息的一个地图评估者递归地估计它的姿势。我们为这二个传感器造非线性的模型并且坚持说机器人运动和不精密的传感器大小的无常操作应该全部被嵌入并且追踪我们的系统。我们在一个概率的几何学观点和使用 unscented 变换描述无常框架宣传无常,它经历给定的非线性的功能。就我们的机器人的处理力量而言,图象特征在相应投射特征的附近被提取。另外,数据协会被统计距离评估。最后,一系列系统的实验被进行证明我们的系统的可靠、精确的性能。An on-the-fly, self-localization system is developed for mobile robot which is operative in a 3D environment with elaborative 3D landmarks. The robot estimates its pose recursively through a MAP estimator that incorporates the information collected from odometry and unidirectional camera. We build the nonlinear models for these two sensors and maintain that the uncertainty manipulation of robot motion and inaccurate sensor measurements should be embedded and tracked throughout our system. We describe the uncertainty framework in a probabilistic geometry viewpoint and use unscented transform to propagate the uncertainty, which undergoes the given nonlinear functions. Considering the processing power of our robot, image features are extracted in the vicinity of corresponding projected features. In addition, data associations are evaluated by statistical distance. Finally, a series of systematic experiments are conducted to prove the reliable and accurate performance of our system.

关 键 词:MAP估计 自动定位 视觉 移动式遥控装置 不确定传播 传感器 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象