机构地区:[1]Institute of Material Physics, Tianjin University of Technology, Tianjin 300384 [2]Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin University of Technology, Tianjin 300191 [3]Tianjin Key Laboratory of Photoelectric Materials and Device, Tianjin 300384 [4]Station 58, Tianjin Supervision Bureau of Quality and Technology, Tianjin 300381
出 处:《Chinese Physics Letters》2008年第1期294-297,共4页中国物理快报(英文版)
基 金:Supported by National Natural Science Foundation of China under Grant No 60576038, and The Royal Society (RS) via an International Joint Project of NSFC and RS, Tianjin Natural Science Key Foundation (06TXTJJC14603), and Tianjin Key Discipline of Material Physics and Chemistry.
摘 要:A novel phosphorescent organic white-light-emitting device (WOLED) with contiguration of ITO/NPB/CBP: TBPe:rubrene/Zn(BTZ)2:Ir(piq)2(acac)/Zn(BTZ)2/Mg:Ag is fabricated successfully, where the phosphorescent dye bis (1-(phenyl)isoquinoline) iridium (Ⅲ) acetylanetonate (Ir(piq)2 (acac)) doped into bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTZ)2) (greenish-blue emitting material with electron transport character) as the red emitting layer, and fluorescent dye 2,5,8,11-tetra-tertbutylperylene (TBPe) and 5,6,11,12-tetraphenyl-naphthacene (rubrene) together doped into 4,4'-N,N'-dicarbazole-biphenyl (CBP) (ambipolar conductivity material) as the blue-orange emitting layer, respectively. The two emitting layers are sandwiched between the hole-transport layer N ,N'-biphenyl-N , N'-bis (1-naph thyl)-(1,1'-biphenyl)-4, 4 Cdiamine (NP B) and electron-transport layer (Zn(BTZ)2 ) The optimum device turns on at the driving voltage of 4.5 V. A maximum external quantum efficiency of 1.53%. and brightness 15000 cd/m^2 are presented. The best point of the Commission Internationale de 1'Eclairage (CIE) coordinates locates at (0.335, 0.338) at about 13 V. Moreover, we also discuss how to achieve the bright pure white light through optimizing the doping concentration of each dye from the viewpoint of energy transfer process.A novel phosphorescent organic white-light-emitting device (WOLED) with contiguration of ITO/NPB/CBP: TBPe:rubrene/Zn(BTZ)2:Ir(piq)2(acac)/Zn(BTZ)2/Mg:Ag is fabricated successfully, where the phosphorescent dye bis (1-(phenyl)isoquinoline) iridium (Ⅲ) acetylanetonate (Ir(piq)2 (acac)) doped into bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTZ)2) (greenish-blue emitting material with electron transport character) as the red emitting layer, and fluorescent dye 2,5,8,11-tetra-tertbutylperylene (TBPe) and 5,6,11,12-tetraphenyl-naphthacene (rubrene) together doped into 4,4'-N,N'-dicarbazole-biphenyl (CBP) (ambipolar conductivity material) as the blue-orange emitting layer, respectively. The two emitting layers are sandwiched between the hole-transport layer N ,N'-biphenyl-N , N'-bis (1-naph thyl)-(1,1'-biphenyl)-4, 4 Cdiamine (NP B) and electron-transport layer (Zn(BTZ)2 ) The optimum device turns on at the driving voltage of 4.5 V. A maximum external quantum efficiency of 1.53%. and brightness 15000 cd/m^2 are presented. The best point of the Commission Internationale de 1'Eclairage (CIE) coordinates locates at (0.335, 0.338) at about 13 V. Moreover, we also discuss how to achieve the bright pure white light through optimizing the doping concentration of each dye from the viewpoint of energy transfer process.
关 键 词:ENERGY-TRANSFER DIODES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...