Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source  被引量:2

Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source

在线阅读下载全文

作  者:何兆海 刘振兴 沈超 段素平 张永存 G. D. Reeves 

机构地区:[1]Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences Beijing 100080 [2]Graduate University of the Chinese Academy of Sciences, Beijing 100049 [3]Los Alamos National Laboratory, Los Alamos, New Mexico, USA

出  处:《Chinese Physics Letters》2008年第2期783-786,共4页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos 40390150, 40674094 and 40523006, and the National Basic Research Programme of China under Grant No 2006CB806305.

摘  要:Measurements of energetic particles obtained by the two geosynchronous satellites (1991-080 and LANL-97A) are performed to investigate the plasma injection boundary and source region during the magnetospheric substorms. The measurement method is developed to allow remote sensing of the plasma injection time and the radial distance of injection boundaries by using measured energy dispersion and modelling particle drifts within the Volland-Stern electric field and the dipole magnetic field model. The radial distance of the injection boundary deduced from a dispersion event observed by the LANL-97A satellite on 14 June 1998 is 7.1RE, and the injection time agrees well with the substorm onset time identified by the Polar Ultraviolet Imager. The method has been applied to an event happened at 22.9 UT on 11 March 1998, when both the satellites (1991-080 and LANL-97A) observed the dispersionless character. The results indicate that the radial distance of injection source locates at 8.1RE at magnetotail, and particles move earthward from magnetotail into inner magnetosphere at 22.5 UT.Measurements of energetic particles obtained by the two geosynchronous satellites (1991-080 and LANL-97A) are performed to investigate the plasma injection boundary and source region during the magnetospheric substorms. The measurement method is developed to allow remote sensing of the plasma injection time and the radial distance of injection boundaries by using measured energy dispersion and modelling particle drifts within the Volland-Stern electric field and the dipole magnetic field model. The radial distance of the injection boundary deduced from a dispersion event observed by the LANL-97A satellite on 14 June 1998 is 7.1RE, and the injection time agrees well with the substorm onset time identified by the Polar Ultraviolet Imager. The method has been applied to an event happened at 22.9 UT on 11 March 1998, when both the satellites (1991-080 and LANL-97A) observed the dispersionless character. The results indicate that the radial distance of injection source locates at 8.1RE at magnetotail, and particles move earthward from magnetotail into inner magnetosphere at 22.5 UT.

关 键 词:ELECTRIC-FIELDS MODEL SUBSTORMS MAGNETOSPHERE REGION 

分 类 号:V474[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象