检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:纪滨[1]
机构地区:[1]安徽工业大学计算机学院,安徽马鞍山243002
出 处:《计算机技术与发展》2008年第2期126-128,132,共4页Computer Technology and Development
基 金:安徽省自然科学研究项目(2006KJ063B)
摘 要:随着数据挖掘的兴起,有许多分类和预测的方法。数据挖掘研究的实施对象多为关系型数据库,这给粗糙集方法的应用带来了极大的方便。关系表可被看作为粗糙集理论中的决策表,而利用粗糙集理论来处理数据挖掘有着传统挖掘工具所不具有的优点。粗糙集理论是一种处理不确定和不精确问题的数学工具,文中通过实例介绍了粗糙集的基本理论,并通过实例详细介绍了在基于对决策表属性约简的基础上采用了可变精度粗糙模型实现规则的获取。该实例说明了对于不完备的信息系统,应用粗糙集理论进行数据挖掘是非常有效的。With the rise of data mining, there are many classification and prediction methods. What data mining researchs largely are relational databases. This has brought great convenience for rough set' s application. The relational table may regard as the decision table in rough set theory,and using the rough set to deal with data mining is more than the traditional mining tools.The rough set theory is a new mathematical approach to data analysis which are indiscernible with respect to some features. In this paper, basic theory of rough set is introducecl using an example, and the implementation of rule mining by variable precision rough set model based on reduction of decision form feature is illustrated using an example. It is effective for rule mining based on rough set by the example.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.141.193