检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学计算机科学与技术系,清华大学软件学院,北京100084,清华大学信息系统安全教育部重点实验室
出 处:《计算机集成制造系统》2008年第1期203-208,共6页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(60373011);国家973计划资助项目(2002CB312006)~~
摘 要:传统过程挖掘算法是针对静态模型和静态日志进行设计的,不能直接用于演化过程的发现。为此,提出了一种过程挖掘算法,应用滑窗机制实现增量式算法设计,利用日志事件关系模型,引入日志事件关系计数和阈值机制,实现对事件日志流的持续挖掘,因而能够发现模型演化的历史及模型当前实际执行情况。分析了算法性质及相关参数的影响,并进行了实验验证。Most existing process mining algorithms were designed for static models and static event logs, so they could not be used in mining evolutionary processes. To deal with this problem, an incremental mining algorithm was proposed, which applied a sliding window to event log stream. And event-relation count and event-relation threshold mechanism were introduced by applying log event-relation model. The unremitting mining of event log flow was realized and a series of models corresponding to evolutionary event logs were obtained. Algorithm property and relevant parameters effect were also analyzed. Experiments were performed to validate the proposed algorithm.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46