检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用与软件》2008年第2期261-263,共3页Computer Applications and Software
摘 要:基于随机化的数据扰乱及重构技术是数据挖掘中的隐私保护(Privacy-Preserving Data Mining,PPDM)领域中最重要的方法之一。但是,随机化难以消除由于属性变量本身相关性引起的数据泄漏。介绍了一种利用主成分分析(Principal Component Anal-ysis,PCA)进行属性精简的增强随机化方法,降低了参与数据挖掘的属性数据间相关性,更好地保护了隐私数据。Randomization, as one of the most important schemes in Privacy-Preserving Data Mining (PPDM) field, can't eliminate privacy breaches of datasets with high correlated attributes effectively. An improvement on randomization scheme is made through the Principal Component Analysis(PCA) to reduce the correlation between the attributes involved in data mining and preserve privacy of original data better.
关 键 词:隐私保护的数据挖掘(PPDM) 随机化方法 主成分分析(PCA) 信息遗失率
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3