On (m, n)-Coherent Modules and Preenvelopes  

On (m, n)-Coherent Modules and Preenvelopes

在线阅读下载全文

作  者:SONG Xian-mei1 CHEN Jian-long 

机构地区:[1]Department of Mathematics, Anhui Normal University, Anhui 241000, China [2]Department of Mathematics, Southeast University, Jiangsu 210096, China

出  处:《Journal of Mathematical Research and Exposition》2008年第1期57-66,共10页数学研究与评论(英文版)

基  金:the National Natural Science Foundation of China (No. 10571026); the Natural Science Foundation of Anhui Provincial Education Department (No. 2006kj050c); Doctoral Foundation of Anhui Normal University.

摘  要:In this paper, let m, n be two fixed positive integers and M be a right R-module, we define (m, n)-M-flat modules and (m, n)-coherent modules. A right R-module F is called (m, n)-M-flat if every homomorphism from an (n, m)-presented right R-module into F factors through a module in addM. A left S-module M is called an (m, n)-coherent module if MR is finitely presented, and for any (n, m)-presented right R-module K, Hom(K, M) is a finitely generated left S-module, where S = End(MR). We mainly characterize (m, n)-coherent modules in terms of preenvelopes (which are monomorphism or epimorphism) of modules. Some properties of (m, n)-coherent rings and coherent rings are obtained as corollaries.In this paper, let m, n be two fixed positive integers and M be a right R-module, we define (m, n)-M-flat modules and (m, n)-coherent modules. A right R-module F is called (m, n)-M-flat if every homomorphism from an (n, m)-presented right R-module into F factors through a module in addM. A left S-module M is called an (m, n)-coherent module if MR is finitely presented, and for any (n, m)-presented right R-module K, Hom(K, M) is a finitely generated left S-module, where S = End(MR). We mainly characterize (m, n)-coherent modules in terms of preenvelopes (which are monomorphism or epimorphism) of modules. Some properties of (m, n)-coherent rings and coherent rings are obtained as corollaries.

关 键 词:(m  n)-M-flat module (m  n)-coherent module (m  n)-M-flat preenvelope. 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象