HORIZONTAL LAPLACE OPERATOR IN REAL FINSLER VECTOR BUNDLES  被引量:2

HORIZONTAL LAPLACE OPERATOR IN REAL FINSLER VECTOR BUNDLES

在线阅读下载全文

作  者:钟春平 钟同德 

机构地区:[1]School of Mathematical Sciences,Xiamen University

出  处:《Acta Mathematica Scientia》2008年第1期128-140,共13页数学物理学报(B辑英文版)

基  金:supported by Tian Yuan Foundation of China (10526033);China Postdoctoral Science Foundation (2005038639);the Natural Science Foundation of China (10601040,10571144).

摘  要:A vector bundle F over the tangent bundle TM of a manifold M is said to be a Finsler vector bundle if it is isomorphic to the pull-back π^*E of a vector bundle E over M([1]). In this article the authors study the h-Laplace operator in Finsler vector bundles. An h-Laplace operator is defined, first for functions and then for horizontal Finsler forms on E. Using the h-Laplace operator, the authors define the h-harmonic function and ho harmonic horizontal Finsler vector fields, and furthermore prove some integral formulas for the h-Laplace operator, horizontal Finsler vector fields, and scalar fields on E.A vector bundle F over the tangent bundle TM of a manifold M is said to be a Finsler vector bundle if it is isomorphic to the pull-back π^*E of a vector bundle E over M([1]). In this article the authors study the h-Laplace operator in Finsler vector bundles. An h-Laplace operator is defined, first for functions and then for horizontal Finsler forms on E. Using the h-Laplace operator, the authors define the h-harmonic function and ho harmonic horizontal Finsler vector fields, and furthermore prove some integral formulas for the h-Laplace operator, horizontal Finsler vector fields, and scalar fields on E.

关 键 词:h-Laplace operator h-harmonic Finsler vector bundle 

分 类 号:O183.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象