基于改进粒子群优化技术的拜耳法物料平衡计算  被引量:1

Bayer material balance computation based on improved particle swarm optimization algorithm

在线阅读下载全文

作  者:孔力[1] 程晶晶[1] 宋胜利[1] 苏日建[1] 

机构地区:[1]华中科技大学控制科学与工程系,湖北武汉430074

出  处:《华中科技大学学报(自然科学版)》2008年第1期95-98,共4页Journal of Huazhong University of Science and Technology(Natural Science Edition)

基  金:湖北省自然科学基金资助项目(2006ABA072)

摘  要:分析了氧化铝生产工艺中物料平衡计算的特点,研究了拜耳法生产工艺流程和拜耳法物料平衡计算的数学模型.针对传统粒子群算法(PSO)存在的不足,给出了具有变异因子并能很好跳出局部最优解的新型粒子群算法(IPSO),并应用于氧化铝生产中的物料平衡计算.计算结果表明:优化后的粒子群算法具有较强的全局搜索能力和较高的收敛精度,是进行拜耳法物料平衡计算的有效方法.This paper firstly analyzed the characteristic of the material balance computation (MBC) in alumina production, and Bayer process was briefly introduced. Then, math model of MBC was presented. In order to solve the problems of easily falling into local optimum solution and slow convergence speed of the traditional PSO, an improved particle swarm optimization (IPSO) with stochastic mutation was proposed based on the gathering degree and the steady degree. During the iterating process, the mutation probability of the current particle was determined by the means of all the particlefs fitness, the gathering degree and the steady degree. The exploration ability was efficiently improved by the mutation, and the probability of falling into local optimumwas greatly decreased. The practical results of the MBC show that the new algorithm was better than the traditional PSO with both a better stability and a steady convergence. Most importantly, results demonstrateed that IPSO was more feasible and efficient in practical application, and also shed new light on the further improvement of PSO.

关 键 词:拜耳法 物料平衡计算 粒子群优化 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象